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Società Italiana di Fisica
Springer-Verlag 2000

Reconstruction of systems with delayed feedback: II. Application

M.J. Bünner1, M. Ciofini1, A. Giaquinta1, R. Hegger2, H. Kantz2, R. Meucci1, and A. Politi1,3,a

1 Istituto Nazionale di Ottica Applicata, Largo E. Fermi 6, 50125 Firenze, Italy
2 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
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Abstract. We apply a recently proposed method for the analysis of time series from systems with delayed
feedback to experimental data generated by a CO2 laser. The method allows estimating the delay time
with an error of the order of the sampling interval, while an approach based on the peaks of either
the autocorrelation function, or the time delayed mutual information would yield systematically larger
values. We reconstruct rather accurately the equations of motion and, in turn, estimate the Lyapunov
spectrum even for high dimensional attractors. By comparing models constructed for different “embedding
dimensions” with the original data, we are able to find the minimal faithful model. For short delays, the
results of our procedure have been cross-checked using a conventional Takens time-delay embedding. For
large delays, the standard analysis is inapplicable since the dynamics becomes hyperchaotic. In such a
regime we provide the first experimental evidence that the Lyapunov spectrum, rescaled according to the
delay time, is independent of the delay time itself. This is in full analogy with the independence of the
system size found in spatially extended systems.

PACS. 02.30.Ks Delay and functional equations – 05.45.Tp Time series analysis

1 Introduction

In many physical, biological, chemical and technical
systems, feedback loops involve a time delay. Typical ex-
amples include population dynamics, where individuals
participate in the reproduction of a species only after mat-
uration, or spatially extended systems where signals have
to cover distances with finite velocities (e.g. reflections in
optical fibre networks coupled back to some light source).
Within this rather broad class of systems, one can find the
production of red blood cells modelled by the Mackey-
Glass equation [1] and laser systems with optical feed-
back described either by the Ikeda [2] or Lang-Kobayashi
[3] equations. To be more specific, let us consider the
following class of delayed differential equations (DDE)

ẋ(t) = f(x(t), xl(t− τ0)), (1)

where x ∈ Rd and xl(t − τ0) is a single component fed
back into the system with a fixed delay τ0. Although
equation (1) appears to be very simple, the phase space
of the system is infinite dimensional, namely the direct
product Rd⊗C1([−τ0, 0[,R), where C1([−τ0, 0[,R) is the
space of differentiable functions from the interval [−τ0, 0[
to R. Accordingly, such systems can, in principle, sus-
tain arbitrarily high-dimensional dynamics. One way to
elucidate this point is by interpreting delayed dynamical
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θ Fig. 1. Space-time representation of
the CO2 laser intensity for a delay
τ0 = 400µs and for τ1 > τ0 chosen
so as to optimize the coherence of the
vertical structures.

systems as spatially extended ones with the introduction
of a two-variable representation of the time

x̂(σ, θ) = x(t = σ + θτ1), (2)

where σ is a continuous space-like variable bounded
between 0 and τ1 ≈ τ0, while θ is a discrete temporal
variable numbering the delay units [4,5]. In fact, this rep-
resentation allows interpreting the long range interaction
due to the delay as a short range interaction along the
θ direction, since y(t − τ1) ≡ y(σ, θ − 1). The meaning-
fulness of this representation can be appreciated in Fig-
ure 1, where the propagation of coherent structures across
different delay units is clearly visible in data taken from
the laser experiment described in this paper (see the next
section for a description of the system).

The most direct approach to the investigation of the
dynamics of an experimental system consists in analysing
the time record of a suitable observable. In the first part
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of this work [6], we discussed in detail the theoretical
framework for the analysis of time-delayed feedback sys-
tems. In fact, it was necessary to develop a specific theory
to reconstruct the equations of motion, since the high com-
plexity of typical time-delayed feedback systems usually
prevents the implementation of the standard embedding
techniques [7,8].

We are able to identify the deterministic structure
underlying one such time series by adopting the ideas de-
veloped by Casdagli [9] for input-output systems. These
are systems such as

xn+1 = f(xn, εn), (3)

where xn ∈ Rd is the state vector and εn is an additional
time-dependent input. If a time series {yn} of some scalar
observable y(x) is available together with the (simulta-
neously recorded) input {εn}, then Casdagli argued and
more recently Stark et al. [10] have proven that the use of
vectors of the form

vn = (yn, yn−1, . . . , yn−m+1, εn, εn−1, . . . , εn−m+1) (4)

provide a proper embedding for m > 2d. Such vectors
unambiguously define the state of the system and in
principle their knowledge uniquely determines the next
observation yn+1.

A discrete-time version of equation (1) has formally
the same structure as an input-output system with the
only difference that the input εn has to be replaced
by the time-delayed value of the variable xl (see also
[11,12]). Therefore, a time series of xl allows to form
vectors which are equivalent to those in equation (4).
The same is possible also when the recorded variable
does not coincide with the feedback one, although a
higher-dimensional state space is required in this case
(see Ref. [6]). More precisely, given the signal xl(t), we
introduce the vectors

vn(m, τ) = (yn, yn−1, . . . , yn−m+1,

yn−T , . . . , yn−T−m+1), (5)

where yn = xl(t = nδt) (δt is the sampling time) and
the integer T corresponds to the physical time τ = Tδt.
In reference [6], it has been shown that for m > 2d and
T = τ0/δt, the knowledge of these vectors is (almost) suf-
ficient to determine the future dynamics. In fact, some
approximations arise because of the infinite-dimensional
phase-space of the original continuous-time system that is
replaced by a finite-dimensional space in the discrete-time
representation. However, we have already seen in numeri-
cal simulations [6] and we shall confirm here by analysing
experimental data that such approximations are harmless
if the sampling time is sufficiently short.

A conceptually more satisfying reconstruction could
be obtained by preserving the continuity of time, but this
would be definitely less practical since the computation of
derivatives from time-series data is a numerically unstable
procedure that drastically increases any kind of noise.

The simplest convincing evidence that a given vector
vn(m, τ) (for the rest of this work we measure τ in sam-
pling units, µs, so that δt = 1 and T = τ) provides a
faithful reconstruction of the dynamics is through a good
forecast of the next observation yn+1. In practice, we in-
troduce the following ansatz for the dynamics in the state
space

yn+1 = hp (vn(m, τ)) , (6)

where the function hp belongs to some class of parame-
terised functions. The unknown parameters p are deter-
mined by minimizing the prediction error

σm =
∑
n

(yn+1 − hp (vn(m, τ)))2 (7)

with respect to the parameters p. A reasonable class of
functions from the point of view of robustness, flexibility
and numerical ease are local linear functions,

yn+1 = bn + an · vn(m, τ), (8)

where the parameters an and bn are determined for each
individual vn by fitting the behaviour in a suitable neigh-
bourhood of vn [13]. The resulting average forecast error
(FCE) is thus computed as a function of τ for different em-
bedding dimensions m. Its minima are used to determine
the optimal choice of m and τ .

The representation of the dynamics by local linear
maps allows most easily to compute the Lyapunov spec-
trum of the system, which is then approximated by τ +m
exponents. It has been verified in many numerical simu-
lations and there are good arguments showing that these
are (approximations of) the largest m+τ exponents of the
original system [14]. The implementation of this procedure
will become definitely more transparent in Sections 3 and
4 where we discuss its application.

This paper is a case study on experimental data from
a laser system to illustrate how far the investigation of
a rather high dimensional dynamics can go when suit-
able methods are employed. Difficulties and limitations
will be illustrated, but much more the overall power of
the method will be proved.

In Section 2, we describe the experimental set-up. In
Sections 3 and 4 we study the low- and high-dimensional
dynamics exhibited by the experiment for different delay
times, while in Section 5 we present methods for the vali-
dation of the results. We will be able to obtain equations
of motion that will be used for short time predictions, for
the computation of the Lyapunov spectrum and for the
generation of new time series, whose properties (such as
the invariant measure) will be compared with the experi-
mental data. Finally, we vary the time lag τ in the model
equations obtained for a given delay time. This is to test
the stability of the model that should be independent of
the delay (as long as the equations of motion do not de-
pend explicitly on τ). The comparison of such numerically
generated data with the experimental data obtained for
the corresponding delay further confirm the validity of the
reconstructed model. In summary, the following sections
will demonstrate that the method proposed in [6] can be
successfully employed in real experiments.
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Fig. 2. Scheme of the experimental setup: M, electro-optic
modulator; LT, laser tube; D, detector; τL, variable delay line;
HVA, high voltage amplifier (amplification factor = 10 000);
B, bias voltage input.

2 The experimental setup

The experimental setup employs a single-mode CO2 laser
with an electro-optic feedback on the cavity losses (Fig. 2).
The feedback consists in a signal proportional to the laser
output intensity which, after a suitable delay and amplifi-
cation, drives an intracavity electro-optic modulator. The
intensity is detected with a fast Hg–Cd–Te photodiode
and the delay line is realized using fast (2 MHz) and ac-
curate (12 bits) A/D (analog-to-digital) and D/A convert-
ers allowing variations of the delay τ0 up to 130 ms with
0.5µs resolution. The high-voltage amplifier adds to the
delayed signal a continuous voltage level B which, once τ0
is fixed, acts as a control parameter. The overall error in
the delay time is dominated by the delay line uncertainty,
δτ0 = ±0.5µs.

The introduction of a delay τ0 in the feedback loop
induces, upon increasing the bias B, a Hopf bifurcation
with the frequency f ≈ 40.0 kHz and the appearance of
other incommensurate frequencies leading to the chaotic
regime. Anyway, if τ0 is of the order of the characteristic
period (∼ 25µs), the fractal dimension of the chaotic at-
tractor remains between 2 and 3 [15–17]. Since the aim
of the present work is to study the transition to a high
dimensional chaotic regime characterized by more than
one positive Lyapunov exponent, we have explored a de-
lay range between τ0 = 50µs and τ0 = 400µs. For these τ0
values, the system shows the same qualitative behaviour.
Superimposed to the Hopf oscillation, we observe a deep
modulation paced by the inverse of the delay τ0, while
the attractor becomes chaotic. A typical time sequence is
shown in Figure 3 (for B = 250 V) together with the corre-
sponding broad-band power spectrum. A further increase
of B leads to a collapse of the attractor into a stable limit
cycle.

The chaotic time series analyzed in the next sections
have been acquired by using a 12 bits A/D converter
(LeCroy 6810) with sampling rate 1.0µs and one million
data memory.

The laser dynamics is influenced by “intrinsic” noise
(dynamical noise) of the overall experimental setup. The
latter is dominated by the noise of the electronic part of
the feedback loop, which amount to approximately 3 bits,
i.e. about half a percent. This noise sets a lower bound
for the prediction error computed later.

The simplest approach to model the dynamics of a
single mode homogeneously broadened CO2-laser is based
on two rate equations for the laser intensity and the
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Fig. 3. (a) High dimensional time series of the CO2-laser in
the long delay regime, τ0 = 400µs. (b) Power spectrum of such
a time series.

population inversion between the two relevant levels.
However, this simple model is not adequate to fit data
coming from experiments in the Q-switching regime, or
in chaotic regimes obtained by sinusoidal modulation of
the cavity losses, or with electro-optic feedback such as
investigated in this paper.

A four-level molecular scheme, taking effectively into
account the coupling between the resonant and some ro-
tational levels provides a more accurate description of the
laser dynamics. Nevertheless, the resulting model (a six-
component DDE [18]) cannot be easily used to reproduce
the behaviour of a CO2-laser with electro-optical feedback
because of the necessity of a fine tuning of the various
parameters.

From the huge set of different measurements, we have
selected three data sets we want to concentrate on in the
rest of this paper. They mainly differ in the delay time,
although other parameters of the laser were slightly mod-
ified too in order to keep the system in the same dynami-
cal regime. The corresponding delays are τ0 = (50± 1)µs,
τ0 = (150±1)µs and τ0 = (400±1)µs. The signal is sam-
pled at times ti = iδt with the sampling time δt = 1.0µs
in all three measurements. The laser intensity is measured
with a 12-bit resolution (0-4095) and afterwards normal-
ized such that 〈y〉 = 0, 〈y2〉 = 1 in each individual time
series. Each of the three data sets consists of 106 points.

3 The low dimensional case

We start the analysis of the laser system from the data
set {yi} created with a sufficiently short delay time (τ0 =
50µs) to ensure a low-dimensional dynamics. This has the
advantage that we can cross-check our results with the
outcome of standard embedding techniques.

Figure 4a shows the first 500 points of the time series.
The delay time evidently represents a relevant scale of the
system, since it corresponds to an approximate periodicity
of the signal.

Figure 4b shows a projection on the two-dimensional
state space (y(t− τ0), y(t)) (here, we use the experimental
knowledge of τ0; later, the delay time will be estimated
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Fig. 4. First 500 data of set with τ0 = 50 and the first 2000
points in a two dimensional delay representation.
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Fig. 5. Autocorrelation (a) and time delayed mutual informa-
tion (b).

from the time series). It gives a reasonable insight about
the overall shape of the hypersurface on which the data lie.
A characteristic signature of time-delayed systems is often
found in the behaviour of the autocorrelation function and
of the mutual information which exhibit a marked peak
for a time difference slightly larger than the delay-time
(see, for instance, [4]). Such revivals are clearly observable
also in Figure 5. In both cases, the first revival is situated
at δ = 58, which is significantly larger than the delay
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Fig. 6. Relative forecast error (multiplied by a factor of 103)
as a function of τ for embedding dimensions m = 2, . . . , 5.

time τ0 = 50. The reason is that the position of the peak
does not depend only on the delay time, but also on the
response of the system to the delayed feedback, so that one
has to add an extra-delay due to the response time [19].

Now, we discuss the implementation of the embedding
technique described in [6]. In doing that, we consider that
the delay τ0 is unknown and thus it is one of the quantities
to be determined. We start computing the one-step pre-
diction error σm(τ) (normalized to the standard deviation
of the data) as a function of the time τ used in the recon-
struction (see Eq. (5)) for m = 1, . . . , 5. For a fair compar-
ison of the results for different embedding dimensions, we
ensured that the average neighborhood size employed in
the local fits was the same (within small fluctuations) for
all m. This means that we use the full data set of length
106 only for m = 5, while shorter segments are considered
for smaller m. As a result, the systematic error due to the
linear ansatz is the same for all dimensions. The results
for m = 2, . . . , 5 are reported in Figure 6, where a clear
minimum is observed in all cases: for m = 2, the mini-
mum is at τ = 51± 1, while for m = 3, 4, 5, τ = 50 ± 1.
Although the estimate of the delay time is in good agree-
ment with our expectations, the forecast error is not very
sensitive to variations in τ as, at most, it doubles when τ
is grossly different from τ0. The only exception is the case
m = 1, not reported in the figure since it is approximately
50 times larger.

For m ≥ 2 the minimal forecast error does never
decrease below σ ≈ 2.3 × 10−3, which is mainly due to
to the dynamical noise present in the experiment (see also
Sect. 2). In fact, the minimum error does not change by in-
dependently varying the size of the neighbourhood of the
fit and the sampling time; therefore we can conclude that
it can neither be attributed to modelling errors nor to the
approximations inherent the map-ansatz (i.e. the projec-
tion of the infinite dimensional phase-space onto a finite-
dimensional one). In Section 4, we shall find the same
limitation on the FCE also for larger values of τ0.

We now proceed with the determination of the
Lyapunov spectrum by iterating the model equations. For
this estimate we use again a variable number of points (de-
pending on m) in order to ensure the same neighborhood
size for the various embedding dimensions. The results are
reported in Figure 7 (please note that the Lyapunov ex-
ponents are expressed in 1/ms units rather than in the
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Fig. 7. Lyapunov spectrum of the τ0 = 50 data set. The first
exponent is estimated to be λ1 ≈ 1.8 [1/ms], while the second
one is about a factor 10 smaller.

sampling frequency 1/µs). This analysis reveals only one
positive Lyapunov exponent. One can also see that the
first six exponents agree for all embedding dimensions,
while irregular deviations are observed for the smaller
ones. The reason for such deviations is not clear. It does
not seem to be a systematic error, since there is no system-
atics observable by changing m. A possible explanation is
a sensitivity of the very negative Lyapunov exponents to
the details of the model which certainly change upon vary-
ing m (because of the noise). In any case, the exponents
involved in the determination of the Kaplan-Yorke dimen-
sion are not influenced and we find the following estimates
for the dimension: 3.27, 3.42, 3.46, 3.56 for m = 2, 3, 4 and
5, respectively. By averaging these values, we can conclude
that DKY = 3.4 ± 0.1. This value is small enough to al-
low us applying the methods of conventional nonlinear
time-series analysis to validate the results. All numerical
tools used here for this purpose are part of the TISEAN
package [20,21].

Since the marginally stable direction of flow data is
unfavorable for the nonlinear analysis, we remove it. We
construct a Poincaré map in the hyper-plane ẏ = 0 by
collecting all local maxima. The resulting data is shown
in Figure 8a. Although the noise level of the original flow
data is fairly low, the Poincaré section is rather noisy.
We thus apply the noise reduction algorithm presented
in [22]. The result after 10 iterations (which turned out to
be sufficient) is shown in Figure 8b.

The figure shows that the noise reduction scheme
allows resolving some singularities in the invariant mea-
sure of the data. Since the first negative Lyapunov ex-
ponent is close to zero (see Fig. 7), even the data of the
Poincaré map look very much like flow data. Moreover, a
clustering (a kind of phase locking) of the points is clearly
visible: this is an artifact of the noise reduction which
typically appears for flow data that are sampled almost
in phase with the dominating frequency. The following
results, however, are not significantly influenced by this
clustering effect.

In Figure 9, we show the behaviour of the correla-
tion dimension [23]. The analysis was done for (standard)
embedding dimensions dE = 1, . . . , 10. The dashed lines
stem from the data before noise reduction (from bottom
to top with increasing dE). Due to the dominance of the
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Fig. 8. Poincaré section of the flow data. Before (a), after (b)
applying a noise reduction scheme.
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Fig. 9. D2 for the data in the Poincaré section. The solid lines
show the result for the data after noise reduction, the dashed
ones for the original data. The dashed horizontal line corre-
sponds to the Lyapunov dimension obtained from the DM-
model.

noise, the only plateaus one sees are those corresponding
to the embedding-space dimension, dE. The solid lines in
the figure show the behaviour after noise reduction. In
this case, there is a nontrivial scaling behaviour on small
length scales (smaller than 10−3). Though the estimates
are still too fuzzy to derive a well defined dimension, the
behaviour is in agreement with the Kaplan-Yorke dimen-
sion which corresponds to the horizontal line.

In the reconstructed phase space, one can obtain a
model-free estimate of the maximal Lyapunov exponent
by following the divergence of nearby segments of the tra-
jectory. Also in this case (by implementing the procedure
described in Ref. [24]), while we cannot draw a definite
conclusion about the numerical value of the Lyapunov
exponent, we can certainly say that the growth rate is
consistent with the previous estimate of the Lyapunov
spectrum.
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The FCE is a local measure of the validity of a given
model. However, as already seen in [6], a small FCE is a
necessary condition for a global reproduction of the ob-
served dynamics, but it is not at all sufficient. For this
reason we have also decided to iterate the optimal mod-
els obtained for each value of m, starting from meaningful
initial conditions (i.e. on the attractor). The (m = 1)-
dynamics leads to unbounded solutions. Accordingly, the
hypothesis that a scalar model provides a convincing re-
construction of the dynamics can be rejected (notice that
this conclusion was transparent already in view of the very
large FCE found for m = 1). For m ≥ 2, the forward iter-
ates of the local linear models remain bounded and their
two-dimensional representations appear to be very similar
to the experimental data (see Fig. 4), so that we can con-
clude that the approximations implicit in the reconstruc-
tion with md = 2 are small and harmless. In the second
section, we mentioned that the minimal realistic model for
a CO2 laser with feedback involves 6 variables: the above
result suggests that 4 of them can be, in a sense, adiabat-
ically eliminated. This conclusion goes even beyond the
application of the center manifold technique that allowed
reducing the initial 6-dimensional model (in the case of
short delay) to a 3-dimensional one [18].

Finally, we tried to model the dynamics by fitting au-
tonomous models in the conventional embedding spaces.
Although the attractor is fairly low dimensional, these
models failed by either converging to fixed point solu-
tions or diverging to infinity. Therefore, we can summa-
rize the discussion on the low-dimensional chaotic dynam-
ics by stating that the construction of a DM-model with
m ≥ 2 components is not only consistent with the appli-
cation of standard methods of nonlinear time series anal-
ysis, but provides a more stable modellisation. The supe-
riority of the DM approach will become more transparent
in the next section where we apply the method to high-
dimensional signals, a case in which Takens-like embed-
ding necessarily fails to give meaningful answers.

4 The high dimensional case

Past experience and the analogy with spatially extended
systems indicate that large time-delays in the feedback
loop enhance the complexity of the dynamics. In this sec-
tion, we analyse the data sets obtained for τ0 = 150 and
τ0 = 400, respectively. It will turn out that the attractor
dimensions Df of these two series are indeed quite large, so
that the standard embedding would fail due to the require-
ment m > 2Df . The aims are (i) to show that our ansatz
allows us to model the data with reasonable accuracy and
(ii) to estimate the minimal embedding dimension md for
a meaningful reconstruction. This gives an upper bound
for the number d of variables involved in the system [6].

As in the previous section, we employ the forecast error
to identify the optimal delay time τ0. Again the length of
the time series is varied from 20 000 for m = 2 to 106 for
m = 5 to ensure a neighbourhood size almost independent
of m (approximately one percent of the attractor size).
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Fig. 10. Relative one-step prediction error (multiplied by 103

in both panels) for the data sets with τ0 = 150 (a) and τ0 = 400
(b), respectively. The different curves correspond to different
embedding dimensions.

The behaviour displayed by the FCE in Figure 10
is qualitatively similar to that observed in the low-
dimensional regime (reported in Fig. 6). At variance with
the previous case, now there is a significant error reduc-
tion in passing from m = 2 to m = 3, but the minimum
error does not further decrease by increasing m beyond
3, meaning that the limit imposed by the noise level has
been reached. Accordingly, this indicator does not allow
drawing a definite conclusion about the relevance of addi-
tional degrees of freedom besides the first 3-ones. A fur-
ther difference with the previous case is the larger value
of the FCE for τ significantly different from τ0. In that
region, the information contained in the second delayed
window becomes increasingly negligible because of the de-
cay of temporal correlations, so that the performance of
our technique does not differ from that of the standard
embedding approach for the same value of m. As here, at
variance with the previous section, the attractor dimen-
sion is definitely larger than m itself, larger FCE’s have
to be expected for low-m models.

The estimates of the delay times are reported in
Table 1. Each value corresponds to the centre of the dip,
while the error is the half-width of the dip. As in the low-
dimensional case, we have investigated the peaks of the
time delayed mutual information and of the autocorrela-
tion. We find again an offset with respect to the known
delay. For the data set corresponding to τ0 = 150, the peak
lies at τ = 157 while for τ0 = 400 the peak is found at
τ = 407. All such data together indicate that the offset is
essentially independent of the delay, confirming that it is
just the response time of the laser system to the feedback.
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Table 1. Estimates of the delay times for the τ0 = 150 and
the τ0 = 400 data sets, respectively.

m τ0 = 150 τ0 = 400

2 152± 2 402 ± 2

3 152± 2 402 ± 3

4 151± 3 401 ± 4

5 151± 3 401 ± 4

Together with the delay time, we now want to estimate
md. Again, we require that a good model does not only
yield good one-step forecasts but reproduces all the prop-
erties of the experimental data, when long trajectories are
created by iterating the model itself. In other words we
propose to compare global properties of the data sets [6].
Once we have verified that the trajectories do not escape
to infinity under iteration of the model, we have deter-
mined the histograms of the data (i.e. the one-dimensional
projection of the invariant measure) and the power spec-
tra. Furthermore, we have investigated the convergence
of the Lyapunov spectra as a function of m and the be-
haviour of the cross-prediction errors between numerically
generated time series and experimental data. For the sake
of completeness, we have also investigated other indicators
such as the mutual information, but we do not comment
on the corresponding results as they simply confirm the
overall scenario.

The comparison is performed as follows: for each em-
bedding dimension we choose the optimal delay time from
Table 1 and accordingly generate an artificial trajectory
which is used to compute the quantities to be compared
with the corresponding ones obtained from the origi-
nal data. If all of them (histograms, power spectra and
Lyapunov exponents) agree for a given m, we can con-
clude that the m-value allows a faithful reconstruction.
The smallest such m is then defined to be md. Figures 11
and 12 show the results for the histograms and the power
spectra, respectively.

The histograms reported in Figure 11 show a nonnegli-
gible dependence on the embedding dimension (the curve
for m = 2 is not shown as it deviates even more strongly
from the expected distribution). It is quite curious to see
that while for τ0 = 150, simpler models (m = 3, 4) give
rise to a (spurious) peak around y = −0.5 which disap-
pears upon further increasing m, the opposite is observed
for τ0 = 400. We can understand this phenomenon by
first noticing that y ≈ −0.5 corresponds to an unstable
fixed point of the dynamics (corresponding to the steady
lasing state). Therefore, it turns out that a correct estima-
tion of the stability of the fixed point is certainly crucial
for a correct determination of the probability density in
its surroundings. A posteriori, we can conclude that “un-
derembedding” leads to a wrong estimation of the local
stability.

The results for the power spectra are less clear. While
for τ0 = 400, the relevant structures of the spectra are
reproduced sufficiently well already for m = 3, for τ0 =
150, differences are still observed by comparing the cases

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

p(
y)

y [ arb. u. ]

(a)

0

0.1

0.2

0.3

0.4

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

p(
y)

y [ arb. u. ]

(b)

Fig. 11. One dimensional projection of the invariant measure
of the original data and for modelled data in different embed-
ding dimensions. (a): Data set with τ0 = 150, (b): data set
with τ0 = 400. In both panels, the solid line corresponds to the
original data, the dashed line to the fit for m = 3, the dotted
one to m = 4 and the dashed-dotted one to m = 5.
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Fig. 12. Power spectrum of the original data and for modelled
data in different embedding dimensions. (a): Data set with
τ0 = 150, (b): data set with τ0 = 400. The definition of the
lines is the same as in Figure 11.
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Table 2. Estimates of the cross-prediction errors for the τ0 =
150 and the τ0 = 400 data sets, respectively. The row indicated
by 0 is the usual prediction error using the original time series
itself.

m τ0 = 150 τ0 = 400

0 5.0 × 10−2 4.8 × 10−2

2 11.9 × 10−2 6.4 × 10−2

3 11.9 × 10−2 6.0 × 10−2

4 10.3 × 10−2 5.9 × 10−2

5 5.9 × 10−2 6.1 × 10−2

m = 3 and 4. Anyway, the relevant frequencies are repro-
duced already for m = 3, so that a clear conclusion about
the appropriate md-value is quite hard to draw.

A more global test of the validity of a reconstructed
model is through the computation of the cross-prediction
error which is a measure of the “distance” between dy-
namical regimes. One might, for instance, be willing to
compare different segments of the same time series to test
the stationarity of the process as in reference [25]. In our
context, the goal is to compare the original experimental
signal X = {xn} with the computer generated trajectory
Y = {yn}, obtained by iterating the reconstructed model.
More precisely, one uses the time series Y as a data base
to make a prediction x̃n+1(Y ) for each possible value of
n. This can be done by identifying the closest Y -points
to each X point in the (2m)-dimensional state-space and
using them to construct a local linear model (see Ref. [6]).
The average cross-forecast error is then defined as

χ(X,Y ) =

√∑N
i=m (x̃n(Y )− xn)2

(N −m)σ2(X)
, (9)

where σ2(X) is the variance of the time series X . No-
tice that χ(X,X) reduces to the standard forecast error.
Therefore, we expect χ(X,X) and χ(X,Y ) to be approx-
imately equal if X and Y follow the same dynamics.

The results are shown in Table 2. The first row shows
the forecast error σ(X,X) for both the τ0 = 150 and the
τ0 = 400 data set. The forecasts are made with a zeroth
order model (in five plus five dimensions) as described
in references [6,25]. These results serve as references for
the next lines. There, the cross-forecast errors are shown
for data produced in the indicated embedding dimensions.
Again the estimate of the error is done in five plus five
dimensions. As for the spectra, we see differences between
the two data sets. While for the τ0 = 150 data there is an
improvement if m is increased from 4 to 5, no such trend
is visible for the τ0 = 400 data. There, the cross-forecast
error is almost constant and comparably small already for
m = 2.

The convergence of the Lyapunov spectra as a function
of m is our last test. The resulting spectra are shown in
Figure 13. The panel (a) shows the first 30 exponents for
τ0 = 150; in analogy with the previous analysis, we see
that a convincing convergence is achieved only for m ≥ 5
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Fig. 13. Lyapunov spectra for the τl = 150 (a) and the τ0 =
400 (b) data sets. Note that the exponents are given in units
of 1/ms and not in 1/µs.

(the differences between the spectra for m = 5 and 6 con-
cern the smaller Lyapunov exponents and are thus not
dynamically relevant). Figure 13b shows the first 50 expo-
nents for τ0 = 400. Again a faster convergence is observed
as suggested from the cross-prediction error, although the
Lyapunov spectrum appears to be a slightly more sensitive
indicator as m = 4 is the minimum embedding dimension
for a convincing convergence.

Taking into account all the results presented so far, it
is rather difficult to draw a final conclusion about md. It
is certainly true that m = 5 is always sufficient to guaran-
tee a good agreement with the experimental data, so that
md = 5 can be certainly considered as an upper bound
to the minimal number of effective degrees of freedom to
be used to construct the state-space. On the other hand,
some properties are already recovered for m = 3. This is
confirmed by looking at Figure 14, where the space-time
representation of the τ0 = 400 data set (left panel) can be
compared with the computer generated trajectory (right
panel) obtained for m = 3: no essential differences can be
detected. While, it is not surprising that different indica-
tors exhibit different sensitivity to modelling errors, it is
somehow less understandable that the two data sets – cor-
responding to different delay times – give rise to different
dependences on the embedding dimension. After a careful
check of the original data, we have found that the time
series with τ0 = 150 (the one exhibiting a slower conver-
gence) is slightly corrupted by a noisy component at 50 Hz
which evidently contributes to lowering the performance
of our method. Anyway, in order to be on the safe side,
in the remainder of the manuscript we shall always work
with m = 5.
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Fig. 14. Space-time representation (as in Fig. 1) of the τ0 =
400 data set. The left panel shows the original data, the right
panel the data obtained by iterating a m = 3 model.

Table 3. Results exploring the Lyapunov spectra. N is the
number of positive Lyapunov exponents, λmax the maximal
exponent, DKY the Kaplan-Yorke dimension and hKS the
Kolmogorov-Sinai.

τ0 N λmax DKY hKS DKY/τ0

[1/ms] [1/ms] [1/ms]

50 1 2.5 3.4 2.5 68

150 4 1.4 10.2 3.3 68

400 11 0.55 23.8 3.0 59

The knowledge of the Lyapunov spectra allows to esti-
mate both the fractal dimensionDKY through the Kaplan-
Yorke formula and the Kolmogorov-Sinai entropy hKS

through the Pesin relation. From the results reported in
Table 3, we can see that the attractors are quite high di-
mensional: in both cases,DKY is larger than the dimension
of our state space and, more importantly, is definitely be-
yond the limit for a successful application of the standard
embedding approach.

Furthermore, our results on the attractor dimension
in the various regimes provide the first experimental
evidence that the dimension of a delayed system is
proportional to the delay time. In fact, both in the low-
dimensional chaotic regime examined in the previous sec-
tion and in the two high-dimensional regimes studied
here, we find approximately the same dimension density
d = DKY/τ0 ≈ (64 ± 5) ms−1. This means that the ad-
dition of (16 ± 1)µs to the delay line contributes to in-
creasing the dimension by one unit. The extensivity of
the fractal dimension, first noticed in [15] when studying
the Mackey-Glass model, can be understood on the basis
of the analogy with spatially extended systems which al-
lows interpreting the delay as a “spatial” size of a suitable
one-dimensional system [5].

In contrast to the fractal dimension that is an exten-
sive quantity, the dynamical entropy hKS of delay feedback
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Fig. 15. Rescaled Lyapunov spectra for the τl = 150 and the
τl = 400 data sets. The exponents were calculated for m = 5.

systems turns out to be independent of the delay. The re-
sults reported in Table 3 clearly confirm this expectation.
The reason for such a difference with truly extended sys-
tems (where the dynamical entropy too is extensive) can
be traced back to the units of the “time” variable θ that
have to be used for a meaningful space-time representation
of delayed systems. As seen in equation (2), θ is essentially
equal to the actual time except for a multiplicative factor
equal to the delay time τ (for this discussion, the possible
difference between τ0 and τ1 is immaterial). Accordingly,
a dynamical entropy measured in θ−1 units has to be mul-
tiplied by τ and thus acquires an “extensive” character as
expected for a spatially extended system.

The extensive character of the dimension and the in-
tensive nature of the dynamical entropy both follow from
a general property of the Lyapunov spectrum that is in-
variant (in the limit of long delays) under the simulta-
neous rescaling of the Lyapunov exponents by a factor τ
and of the exponent’s index by 1/τ [26]. Accordingly, the
two spectra reported in Figure 13 should collapse onto the
same curve. This is indeed confirmed by Figure 15, which
at the same time confirms the correctness of the two-
window embedding technique and provides experimental
evidence for the scaling behaviour of the Lyapunov spec-
trum.

The spectrum obtained for τ0 = 50 does not overlap
equally well. In complete analogy with space-time systems,
this is certainly due to finite-“size” effects.

5 Delay-time independence of the model

We started developing our theory under the assumption
that we deal with delay differential equations such as in
equation (1). The success of the two-window approach im-
plies that the information contained in vn is equivalent
to that in (x(t), xl(t − τ0)) for t = nδt, provided that
the correct value of τ = τ0 is chosen in vn. Accordingly,
there exists a delayed map yn+1 = g(vn) whose dynam-
ics is equivalent to that stemming from the velocity field
f(x(t), xl(t− τ0)). As a consequence, as long as the veloc-
ity field does not depend explicitly on τ (as it is the case
in our experimental set-up), the same holds true for the
mapping g.
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Fig. 16. First 1000 points of a trajectory with delay τb = 150
produced by using the data from the τa = 400 data set (a) and
the original data from the τ0 = 150 data set (b).

The outstanding consequence is that the model con-
structed from a data set with some τ0 = τa can be used to
simulate the behaviour for a different delay τ0 = τb. The
only problem comes from the lack of a global knowledge
of g, which is inferred only in the region of the state-space
visited by the input data. Therefore, the extension of the
model to a different delay is possible only if, in the new
regime, the dynamics does not leave the support of the
invariant measure of the original one.

Iteration of a model constructed for τ0 = τa with a dif-
ferent delay time τb can be executed in the following way.
Let vi(τa) be the vectors from the reference data set (our
data base) and ṽi(τb) the vectors to be produced. In order
to forecast x̃n+1 we determine g in a small neighborhood
of ṽn(τb). This can be done by linearly approximating the
set of all points vr(τa) that are close to ṽn(τb). Next, we
use the fitted law to iterate ṽn(τb). This is exactly the
scheme of the cross-prediction described in the previous
section, with the only difference that here the past win-
dow of ṽi(τb) vectors differs from that of vi(τa) ones.

More specifically, we have used the data set with τa =
400 to produce a trajectory simulating the behaviour for
τb = 150. Since the dimension of the dynamics for τa is
larger than that for τb, we can expect that our artificial τb-
trajectory will not leave the region where we have to find
τa-neighbours (i.e., the support of the invariant measure
for τb is a subset of that in the τa case). As an initial
condition for the forecast, we used the first points of the
τa data, so that we have to discard the initial transient.

Figure 16 shows 1000 points of the trajectory produced
by the above described procedure. The main visible fea-
ture is a long periodicity approximately equal to 150µs,
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Fig. 17. Comparison of the invariant measure (more precisely
the scalar distribution) (a) and the power spectrum (b) of the
original data with τb = 150 (dashed line) and the data pro-
duced by iterating the τa = 400 model with τb = 150 (solid
line).

which matches the delay time τb. Much more we cannot
learn from this figure. In order to perform a more quanti-
tative comparison we have looked at statistical properties
of the data set. Figure 17a shows the scalar distribution
of the data.

The two lines shown in the plot are the distributions
estimated from the computer generated (solid line) and
from the original (dashed line) trajectory with τb. The
agreement is certainly comparable with that one guaran-
teed by the model constructed directly from the experi-
mental data for τb (including the absence of a peak around
y = −0.5). A similar conclusion can be drawn by looking
at the power spectra in the panel (b) of the figures. In par-
ticular, the various peaks that are absent in the original
dynamics at τa are located in the correct positions. The
most significant deviations are found in the low-frequency
region that is anyhow the most critical one as it can be
observed in Figure 12.

As a last check we have computed the Lyapunov spec-
trum which agrees all the way down to the smallest ex-
ponents (see Fig. 18). Such a beautiful agreement must,
however, be interpreted as a proof of the stability of the
method (as we are comparing models obtained for two dif-
ferent delay times) rather than an indication of the cor-
rectness of the whole spectrum.

We also tried to apply the same procedure to gener-
ate a trajectory with τ0 = 50. Unfortunately, all attempts
have converged to a periodic orbit. In our opinion, the
reason is the retuning of the bias voltage B in the ex-
periment when switching from τ0 = 50µs to τ0 = 150µs.
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Fig. 18. Similar to Figure 17, but for the Lyapunov spectra
of both data sets.

In the low-dimensional case, several periodic windows can
be detected in chaotic regions. Thus, a small change in
a control parameter is likely to induce a transition either
from chaotic to periodic behaviour or vice versa.

6 Conclusions

We have analysed the behaviour of a CO2 laser with a
time-delay feedback with a new embedding technique, de-
signed to treat this class of systems. For a short delay-
time, where the dynamics is low-dimensional, we have
been able to check our methodology by comparing its re-
sults with those of well established methods from nonlin-
ear time series analysis. Already in that case, the approach
proved to be superior, allowing to construct a globally
stable model. In the case of high-dimensional dynamics
(longer delays) we have been able to model the system in
a state-space of dimension significantly smaller than that
of the attractor. We could show that the minimal embed-
ding dimension needed to reproduce all relevant features
is md = 5, indicating that the active degrees of freedom
of the laser are bounded between 2 and 5.

Furthermore, we have provided the first experimental
evidence of the scaling behaviour of the Lyapunov spectra
with the delay time. Accordingly, we have found that the
dimension density is such that an additional active degree
of freedom is created when the delay time is increased by
16µs. Moreover, we have been able to confirm that the
dynamical entropy does not increase with the delay time.

Finally, we want to stress that with the identification
of a model in the maximally chaotic regime (i.e. for
sufficiently large delay) one could, in principle, study the
whole bifurcation scenario of a delayed feedback system,
upon changing the delay time. One could, for example,
study the transition from standard chaos (one single
positive Lyapunov exponent) to hyperchaos (more than

one positive Lyapunov exponent) and compare with the
experimental data. This interesting perspective is left to
future investigations.
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